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The Interval Coloring problem

Given a path P = (v1, e1, v2, e2, . . . , en−1, vn) on n nodes.

Edge ei has capacity c(ei) ≡ ci.

There are k intervals (requests) I1, . . . , Ik.

Ii = [si, ti] and there is a demand di associated with it.

A set of intervals I is feasible if the total demand of all intervals in I
passing through any edge e does not exceed it’s capacity c(e).

Goal is to partition the requests I1, . . . , Ik into a number of sets such
that each set is feasible and the total number of sets is minimized.

We can think of this as assigning colors to intervals so that each color
class is feasible and we want to minimize the number of colors.

This can also be thought of as routing the requests in a feasible
manner in a number of rounds.

Can be studied under offline or online setting.
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A sample Interval Coloring instance

d1 = 7

d2 = 5

d3 = 8

d4 = 6

10 10 13 15 14 11 10
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Motivation

The path graph is a natural setting for many applications, where a
limited resource is available and the amount of the resource varies
over time.

Many combinatorial optimization problems which are NP-Hard on
general graphs remain NP-Hard on paths.

We can represent time instants as vertices, time intervals as edges
and the amount of resource available at a time interval as the
capacity of the corresponding edge.

The requirement of a resource between two time instants can be
represented as a demand between the corresponding vertices with a
certain profit associated with it.
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Application of Interval Coloring

Consider an optical line network, where each color corresponds to a
distinct frequency in which the information flows.

Different links along the line have different capacities, which are a
function of intermediate equipment along the link.

Each request uses the same bandwidth on all links that this request
contains.

As the number of distinct available frequencies is limited, minimizing
the number of colors for a given sequence of requests is a natural
objective.
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Related work for Interval Coloring

Interval Coloring is NP-Hard for arbitrary demands since, if
we take P to be a single edge, this is the Bin Packing problem.

If all capacities and demands are 1, this is the Interval Graph
Coloring problem, for which a greedy algorithm gives the optimum
coloring with ω colors, where ω is the maximum clique size of the
interval graph.

For the corresponding online problem, Kierstead and Trotter gave an
online algorithm which uses at most 3ω − 2 colors. They also gave a
lower bound of 3ω − 2 on the number of colors required in any
coloring output by any deterministic online algorithm.

Leonardi and Vitaletti showed that no randomized algorithm for
online coloring of interval graphs can achieve a competitive ratio
strictly better than 3ω − 2.
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Related work for Interval Coloring . . .

The best upper bound known for the First-Fit algorithm is 8ω by
Pemmaraju et al., and a lower bound of 4.4ω was shown by Chrobak
and Slusarek.

For unit capacities and arbitrary demands, Narayanaswamy gave a
10-competitive algorithm. Epstein et al. proved a lower bound of
24
7 ≈ 3.43 for this problem.

For arbitrary capacities and demands, Epstein et al. gave a
78-competitive algorithm, assuming that the maximum demand is at
most the minimum capacity (no-bottleneck assumption).

They also proved that without this assumption, there is no
deterministic online algorithm for interval coloring with nonuniform
capacities and demands, that can achieve a competitive ratio better

than Ω(log log n) or Ω
(

log log log
(
cmax
cmin

))
. Here, cmax and cmin are

the maximum and minimum edge capacities of the path respectively.
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Interval Coloring on trees

It is easy to construct a set of intervals on a binary tree requiring at
least 3L

2 colors, where L is the maximum load on any edge.

Raghavan and Upfal gave an algorithm to color any set of paths of
maximum load L on a tree using at most 3L

2 colors.

Bartal and Leonardi gave an O(log n)-competitive algorithm for the
special case when di = 1, 1 ≤ i ≤ k and ce = 1, e ∈ E, i.e., when all
capacities and demands are one.

They also proved that any deterministic online algorithm for trees

cannot have competitive ratio better than Ω
(

logn
log logn

)
.

Leonardi and Vitaletti showed that for trees of diameter
∆ = O(log n), no randomized algorithm for online coloring can
achieve a competitive ratio better than Ω(log ∆).
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Lower bound example on trees
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Our results

For paths:

Optimal algorithm for unit demands, arbitrary capacities.

3-approximation algorithm for uniform capacities, arbitrary demands.

24-approximation algorithm for arbitrary capacities and arbitrary
demands with NBA.

58-competitive online algorithm with NBA.

For trees:

64-approximation algorithm with NBA.

O(log n)-competitive online algorithm for uniform capacities and
arbitrary demands.
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Our results

Path Tree
Unit demand Unit capacity Arbitrary

Offline optimal 3 24 64

Online none 10 58 O(log n)
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Preliminaries

Fe = Set of all requests passing through edge e.

le = Total demand of all requests passing through e =
∑

i:Ii∈Fe
di, is

the load on edge e.

re =
⌈
le
ce

⌉
, is the congestion on edge e.

r = maxe∈E re, is the maximum congestion on any edge.

Let OPT be the minimum number of colors required for the given
problem instance. Clearly, OPT ≥ r.

If ω demands are mutually incompatible with each other, then each of
them has to be assigned a different color. Hence, OPT ≥ ω.

The bottleneck edge bi of a request Ii is the minimum capacity edge
on the path from si to ti. We denote the capacity of bottleneck edge
also by bi.
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Approximation algorithms for Interval Coloring with
arbitrary capacities and demands

Separate the requests based on whether di >
1
4bi (large demands) or

di ≤ 1
4bi (small demands), where bi is the bottleneck edge capacity.

We sort the small demands based on their left endpoints and then
assign a demand to the first color, where the total load on the
bottleneck edge e (excluding this demand) is at most ce

16 .

It can be proven that this requires at most 16r colors and the coloring
is feasible.
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For large demands, round down capacity of every edge to the nearest
multiple of cmin.

This will increase the congestion r by a factor of 2.

Round up every demand to cmin. Note that for any large demand,
di >

1
4bi ≥ 1

4cmin.

Moreover, di ≤ cmin because of NBA.

This will increase the congestion r by a factor of 4.

The resulting instance has uniform demands, which can be colored
with r colors. So, large demands require 8r colors.

In total, we require at most 24r ≤ 24 ·OPT colors.
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Online Interval Coloring with arbitrary capacities
and demands

We scale down all capacities and demands by a factor of cmin, so that
the new cmin = 1 and the new dmax ≤ 1.

Then, we round down all edge capacities to the nearest power of 2, so
that if c(e) ∈ [2k, 2k+1) then the new c(e) = 2k.

The class of a demand di is defined as `i = log2 c(bi).

For a demand di in class j ≥ 1, we call it a small demand if
di ≤ min(1, 2j−3).

For a demand di in class 0, we call it a small demand if di ≤ 1
4 .

Note that large demands can exist only in classes 0, 1 and 2.
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Schematic representation of classes of demands

Class Small Large Bottleneck capacity Allocated capacity
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0, 14
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Handling small demands

Small demands are 1
4 -small.

The resulting instance has uniform capacity.

4-competitive algorithm for this.

Additional loss of a factor of 8 due to rounding and allocating only
2j−1 capacity instead of 2j .

So this is 32-competitive.
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Algorithm for small demands and uniform capacity

Our algorithm partitions intervals into disjoint sets and colors each set
independently with separate colors.

S = {S1, S2, . . .} is the family of sets containing already processed
requests.

Si is the set of requests at level i.

For each new request R, we look for a set with the lowest possible
index k such that the total load of all the demands in(⋃k

i=1 Si

)
∪ {R} on any edge e of R does not exceed 1

4kc.

If on any edge e this inequality is violated, we call e a critical edge of
R on that level.

Note that e is the edge which prevented R to be put on level k.
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An online algorithm for 1
4-small demands

k ← 1;
while there are still requests in the input do

let R be the next request;

while for any edge e ∈ R, le
((⋃k

i=1 Si

)
∪ {R}

)
> 1

4kc do

// e is called a critical edge of R on level k.
k ← k + 1;

end
Sk ← Sk ∪ {R};
give R the lowest numbered color not used in any sets S1, . . . , Sk−1
and consistent with Sk;

end
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Competitive ratio

Small demands require at most 32 ·OPT colors.

Large demands in classes 0, 1 and 2 require at most 26 ·OPT colors.

Total number of colors required is at most 58 ·OPT.

Hence, this algorithm is 58-competitive.
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Online Interval Coloring for trees

Given a tree with n vertices, we can find a vertex r, whose removal
partitions the vertices into disconnected components, each of which
has size at most n

2 .

We call such a vertex a vertex separator.

We can divide each of these components further in a similar manner
recursively.

The vertex set V will thus be partitioned into classes
V1 = {r}, V2, . . . , Vlogn.

The vertices in Vi are called level i vertex separators.

Request R is called a level i request, if i is the minimum level of any
vertex in the interval I of R.
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Alternatively, we can also classify the requests based on the least
common ancestor of the endpoints of a request R, LCA(s, t).

A (balanced) binary tree has height O(log n).

A request is on level i, if LCA(s, t) is on level i.

Note that a request can be on only one level.
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Algorithm

We allocate separate colors for requests on different levels.

When a request on any level comes, we use First-Fit to assign it to
the lowest available color, while maintaining feasibility.

For requests on a particular level, First-Fit is 2-competitive.

For binary trees with n vertices, our algorithm is (2 log n)-competitive.

For b-ary trees, this will give a (b log n)-competitive algorithm.
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How bad the congestion bound can be?

v1 v2e1 e2 vn+1vn en

2 12n−1 2n−2

2n−1

2n−2

2

1

2n−3

2n−3

opt = n, r = 2, ω = n.
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Conclusion

In this talk, we presented several algorithms for solving various
instances of the Interval Coloring problem.

We saw that some special cases of this problem can have much better
algorithms.

We gave a constant factor competitive algorithm for paths and an
O(log n)-competitive algorithm for trees for the Online Interval
Coloring problem.
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Future work

Is there a unified algorithm for Interval Coloring for all cases?

Can we improve the approximation factor of the Interval
Coloring problem on paths and trees?

What is the approximability of these problems without the
no-bottleneck assumption?

Is there a better constant factor competitive algorithm for the
Online Interval Coloring problem on paths?

What is the hardness of approximation of these problems?

What is the lower bound on the competitive ratio of online
algorithms?
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Questions?
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